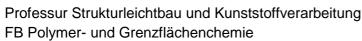
Fakultät für Maschinenbau


Professur Strukturleichtbau und Kunststoffverarbeitung FB Polymer- und Grenzflächenchemie

Messprotokoll

Bearbeiter	Hase, Katja (HA 34823)			
Messgerät	HAAKE MARS III			
letzte Kalibrierung	09.07.2014			
Temperiergerät	CTC (MARS III)			
Kühlmedium	Druckluft			
Messgeometrie	Platte-Platte-Geometrie, 20 mm, Stahl			
Trägheitsmoment	9,407e-07 kg m²			
Messspalt	1,000 mm			
Messtemperatur	200,00 °C ± 0,50 °C			
	210,00 °C ± 0,50 °C			
	220,00 °C ± 0,50 °C			
Elementdefinitionen	 - Messgeometrie vorwärmen zur exakten Nullpunktsbestimmung - Probe einfüllen, Messspalt schließen - Temperaturgleichgewicht der Probe im Messspalt 			
	1) kontinuierliche lineare Rotationsrampe modular im CR-Modus: $\gamma^{\bullet} = 0.01000 \text{ 1/s} - 0.1000 \text{ 1/s}; t 600,00 \text{ s}$ $\gamma^{\bullet} = 0.1000 \text{ 1/s} - 10,00 \text{ 1/s}; t 60,00 \text{ s}$ $\gamma^{\bullet} = 10,00 \text{ 1/s} - 80,00 \text{ 1/s}; t 6,00 \text{ s}$			
	2) Frequenztest Oszillation:			
	CD-Modus; $\gamma_{LVEB} = 0.0004$ -; $f = 100.00 - 0.01592$ Hz			
Probe	PLA+LGF30 (Granulat)			
Dateien	PLA-LGF30_Atest_200°C.rwd			
	PLA-LGF30_ftest_200°C_3.rwd			
	PLA-LGF30_ftest_210°C.rwd			
	PLA-LGF30_ftest_220°C.rwd			
	PLA-LGF30_Rot_200°C.rwd			
	PLA-LGF30_Rot_210°C.rwd			
	PLA-LGF30_Rot_220°C.rwd			
Auswertung	Fließ- und Viskositätskurve aus Rotationsversuch			
	Verlauf Verlust- und Speichermodul aus Oszillationsversuch			

31.08.2015 Hase, Katja

Fakultät für Maschinenbau

Auswerteprotokoll / Ergebnisse

- jeweils nur Einfachbestimmungen ausgeführt

1) Rotationsversuche

- in Abbildung 1 sind die Fließ und Viskositätskurven des langglasfaserverstärkten PLA's dargestellt
- Granulat wurde parallel auf der Messplatte platziert, aber aufgrund der Faserorientierung im Messspalt während der Rotation sind keine glatten Viskositätskurven zu messen
- eine genaue Interpretation ist nicht möglich, aufgrund der Interaktion der Fasern

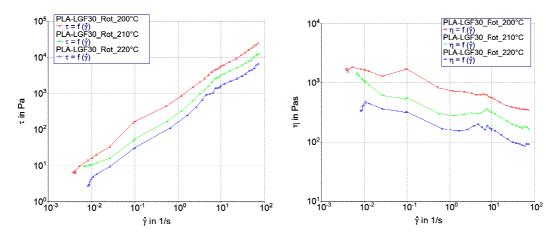


Abb. 1: Fließ- und Viskositätskurve PLA + LGF30 in Abhängigkeit von der Messtemperatur.

2) Oszillationsversuche

- vor jedem Frequenztest wird ein Amplitudentest zur Bestimmung des linearviskoelastischen Bereiches durchgeführt (Abb. 2)
- bei langglasfaserverstärktem PLA ist dieser sehr klein $\rightarrow \gamma_{LVEB} = 0,0004$

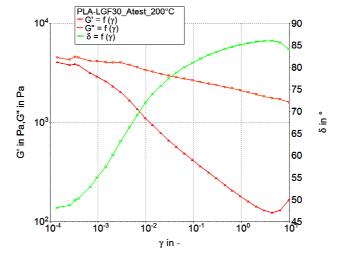
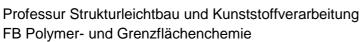



Abb. 2: Amplitudentest des LGF-verstärkten PLA's bei 200 °C.

31.08.2015 Hase, Katja

Fakultät für Maschinenbau

- bei einer Messtemperatur von 200 °C ist das Speichermodul G' kleiner als das Verlustmodul G', das heißt die Probe verhält sich viskos, ist also fließfähig
- die Ergebnisse der Frequenztests sind in Abbildung 3 dargestellt

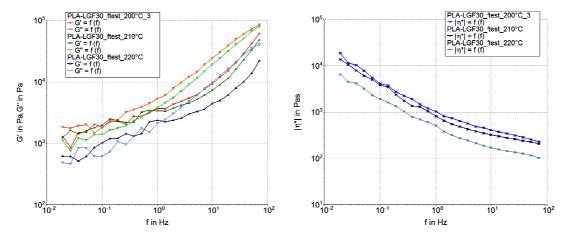


Abb. 3: Ergebnisse der Frequenztests von PLA – LGF30 in Abhängigkeit von der Messtemperatur.

- bei höheren Frequenzen (ab f = 1 HZ) ist Material fließfähig (G' < G")
- bei kleinen Frequenzen ist die Faser-Faser- und Faser-Matrix-Interaktion dadurch erkennbar, dass das Material ständig zwischen viskosem und elastischem Verhalten wechselt → mehrere Schnittpunkte G' = G" (Cross-Over-Punkt → COP, s. Tab. 1)
- dieses Verhalten ist bei kleiner Messtemperatur ausgeprägter als bei hoher

Tab. 1: Zusammenstellung der COP in Abhängigkeit von der Messtemperatur.

Т	G' = G''	f	Т	η*
[°C]	[Pa]	[Hz]	[Pa]	[Pas]
200	2315	1,211	1,248	430,3
	1700	0,5848	0,6466	654,1
	1310	0,3730	0,6098	790,8
	732,1	0,0617	0,4232	2672
	590,3	0,0307	0,3432	4327
210	3452	0,8180	1,681	949,9
	2448	0,4086	1,354	1349
	2210	0,3399	1,307	1464
220	1984	0,1120	1,214	3987
	1773	0,0613	1,176	6507

- Viskosität fällt mit steigender Messtemperatur, wobei ab dem ersten COP (unter f = 1 Hz) die Angabe der Viskosität nicht mehr sinnvoll ist (Probe zeigt kein eindeutiges viskoses Verhalten mehr)
- PLA-LGF30 zeigt ein nichtlineares viskoelastisches Fließverhalten

31.08.2015 Hase, Katja